Saturating Constructions for Normed Spaces

نویسنده

  • Stanislaw J. Szarek
چکیده

We prove several results of the following type: given finite dimensional normed space V there exists another space X with log dimX = O(log dimV ) and such that every subspace (or quotient) of X, whose dimension is not “too small,” contains a further subspace isometric to V . This sheds new light on the structure of such large subspaces or quotients (resp., large sections or projections of convex bodies) and allows to solve several problems stated in the 1980s by V. Milman.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saturating Constructions for Normed Spaces II

We prove several results of the following type: given finite dimensional normed space V possessing certain geometric property there exists another space X having the same property and such that (1) log dimX = O(log dimV ) and (2) every subspace of X, whose dimension is not “too small,” contains a further wellcomplemented subspace nearly isometric to V . This sheds new light on the structure of ...

متن کامل

Minimal 1-saturating sets and complete caps in binary projective spaces

In binary projective spaces PG(v, 2), minimal 1-saturating sets, including sets with inner lines and complete caps, are considered. A number of constructions of the minimal 1-saturating sets are described. They give infinite families of sets with inner lines and complete caps in spaces with increasing dimension. Some constructions produce sets with an interesting symmetrical structure connected...

متن کامل

Multiple coverings of the farthest-off points and multiple saturating sets in projective spaces

For the kind of coverings codes called multiple coverings of the farthestoff points (MCF) we define μ-density as a characteristic of quality. A concept of multiple saturating sets ((ρ, μ)-saturating sets) in projective spaces PG(N, q) is introduced. A fundamental relationship of these sets with MCF codes is showed. Lower and upper bounds for the smallest possible cardinality of (1, μ)-saturatin...

متن کامل

STABILITY OF THE JENSEN'S FUNCTIONAL EQUATION IN MULTI-FUZZY NORMED SPACES

In this paper, we define the notion of (dual) multi-fuzzy normedspaces and describe some properties of them. We then investigate Ulam-Hyers stability of Jensen's functional equation for mappings from linear spaces into  multi-fuzzy normed spaces. We establish an asymptotic behavior of the Jensen equation in the framework of multi-fuzzy normed spaces.

متن کامل

REMOTAL CENTERS AND CHEBYSHEV CENITERS IN NORMED SPACES

In this paper, we consider Nearest points" and Farthestpoints" in normed linear spaces. For normed space (X; ∥:∥), the set W subset X,we dene Pg; Fg;Rg where g 2 W. We obtion results about on Pg; Fg;Rg. Wend new results on Chebyshev centers in normed spaces. In nally we deneremotal center in normed spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004